百合文库
首页 > 网文

幻一道题的多种解法(2)

2023-07-17 来源:百合文库
n平方 n=正偶数
所以m只能是正偶数→重要证明点2
而n可以是正奇数也可以是正偶数
可以得知m在等式不展开时,只能为正奇数,在等式展开后,只能为正偶数,那么m不等于正奇数也不等于正偶数,那么m就只能非整数。
=评论2=
再进行一种解法
则m(m 2)=n(n 1)>0
得到n>m
设m x=n
m(m 2)=(m x)(m x 1)
先计算(m x)(m x 1)=m*m mx m mx x*x x
m*m 2mx m x*x x=m*m 2m
m=2mx x*x x
m=x(2m x 1)
因为m>0,n>0,m x=n>0则得出x>0
在m和x都大于0时,不存在m=x(2m x 1)的解
m=x(2m x 1)>0无解
=作者的话=
感觉初中数学题目,好多都是围绕这(A B)^2,(A-B)^2,(A B)(A-B)的题目啊,各种转换,各种取个XAA YAB ZBB C=D的题目,所以,是不是看到带一个或多个任意数的平方的方程,就都要尽可能分解成(A B)^2,(A-B)^2,(A B)(A-B)?都要成通识了,感觉出题的人也怪不容易的,就把一个定律转化成一万种结果,然后让人去逆推过程咯。


猜你喜欢