百合文库
首页 > 文库精选

几何意义的读后感汇集(10)

2022-08-14 来源:百合文库
教学目标:理解导数的几何意义,会求曲线的切线方程。
教学重点:掌握在某点和过某点的切线问题的`求解方法。
教学难点:让学生在观察、思考、发现中学习,归纳总结、启发 学生研究性问题。
四、说教法
备课准备充分,为促进学生思维方式方法形成提供动力源泉。
多媒体辅助教学,通过几何画板的动态演示,能充分发挥其快捷、生动、形象的特点,无需提出问题让学生通过小组议论形式,发现规律,更有利于难点的突破。让学生亲身经历“观察、思考、发现、归纳总结、启发学生研究性”的过程,教师针对各组的结论引导学生用逼近的思维方法,理解导数的几何意义,同时尽量为后面的单调性、极最值、函数值变化快慢等做好总结性铺垫。教给学生思考问题的方法和依据,使学生真正成为教学主体。
五、说学法
通过小组议论形式让学生参与教学活动,促进学生间合作学习与交流,共同探讨问题,探索解题方法,产生互动效果,提高学生的合作意识,共同来完成教学目标。
六、说教学过程
(一)回顾与引入
回顾函数平均变化率定义及其几何意义;导数的定义及其导数的物理意义,铺设类比迁移情景。提出导数的几何意义是什幺?
(二)导数几何意义的探求过程
1.切线的定义
利用圆的切线与割线的动态联系适时地给出一般曲线的切线定义(避免从公共点的个数来定义)。
2.动态观察割线与切线的关联
通过演示割线的动态变化趋势,为学生观察、思考提供平台,引导学生共同分析,直观获得切线定义。通过逼近方法,将割线趋于确定位置的直线定义为切线,使学生体会这种定义适用于各种曲线,反映了切线的直观本质,从而归纳出导数的几何意义。这里教师要引导学生归纳总结曲线在某点处切线与曲线可以有不止1个公共点。直线与曲线
只有一个公共点时,不一定是曲线的切线。
3.通过例题体现应用,归纳求解步骤。
猜你喜欢