百合文库
首页 > 文库精选

集合论发展的读后感汇集(32)

2022-07-08 来源:百合文库
空间
空间的研究源自于欧式几何。三角学则结合了空间及数,且包含有非常著名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。
基础
为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托尔(1845-1918)首创集合论,大胆地向“无穷大”进军,为的就是给数学各分支提供一个坚实的基础,而它本身的内容也就是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献。
集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”。


猜你喜欢