【连载】两百个高智商天才,被卷入一场互相残杀的上帝游戏 章二十 智力学定律(7)
温素冰看到欲哭无泪的我们,苦笑了一下,道:
“你们别这样看我啊,其实我也听不太懂,当初我的数学成绩也是省内得过第一名的,但是对这种问题我也不太解得开了,大概得说朱清云的意思就是把我们七个队伍比喻成了七个皇子,把那个叫美夜子神一样的能力比作皇位,我们七个队伍实力差不多,每个队伍要采取什么样的措施才能够获得胜利……这道题太难了,我想不出来……”温素冰看着朱清云,苦笑道:
“以你的智力,你应该解开了吧?”
朱清云看着温素冰,道:
“是的。”
温素冰眼睛一亮,道:
“能告诉我们答案吗?”
朱清云缓缓地道:
“可以。
“1、这道题用正向思维很难解,但是用逆向思维却能够找出一条路来。
“2、由于每个皇子都是理性人,结果必然只能是概率的。
“3、由于每个皇子都是理性人,于是第一关的结盟环节其实是可有可无,每个皇子都有可能结盟成功,也有可能结盟对象是欺骗的,从这一点上来说其实每个皇子的失败几率和成功几率都相等,所以在第一关时,皇子之间的胜负没有区别,第一关的结盟其实只是我的一个幌子,用来迷惑你们,关键还在于厮杀前的报出对象阶段。
“4、考虑到第二关的报名对象需要用到逻辑学的知识,可以判定这道题目其实并不是单纯的博弈论题目,而是需要运用到逻辑学知识的逻辑题。
“5、考虑到游戏规则中多数人结盟一方必然战胜少数人,可以推测出这是一道‘多数决’的问题,也就是说想要获得胜利,就要不断地站在多数人的那一方,一直站到最后一关才开始分裂。
“6、于是结题的思路已经非常明确了:
“首先,如果想要获得胜利,那么在第一次厮杀中,应该站在多少人那一方,也就是要形成4:3的局面,淘汰掉三人,剩下4人。
“其次,在第二轮厮杀中,必须要形成3:1的局面,淘汰掉1人,剩下3人。
“第三,在第三轮厮杀中必然会分裂成以下两种局面:
“一、1:1:1的局面,这种局面下,想要获胜的那一方只有靠引诱另外的两方同归于尽来获胜,为了引诱其中两方同归于尽,则3人之中剩下的一人必须是1号皇子。但问题在于剩下三人时,除了1号皇子外的两个皇子都知道和1号皇子战斗都会导致自己必败,所以谁都不会轻易出手,而1号皇子也知道和另外两个皇子交手必败,于是也不会出手,这时候1:1:1的局面就会永远恒定,无法打破,此时这个局无解