百合文库
首页 > 文库精选

费马大定理读后感细选(12)

2022-08-27 来源:百合文库
少年时代的牛顿在剑桥大学附近的夜店里买了一本《几何原本》,开始他认为这本书的内容没有超出常识范围,因而并没有认真地去读它,而对笛卡儿的“坐标几何”很感兴趣而专心攻读。后来,牛顿于1664年4月在参加特列台奖学金考试的时候遭到落选,当时的考官巴罗博士对他说:“因为你的几何基础知识太贫乏,无论怎样用功也是不行的。”
这席谈话对牛顿的震动很大。于是,牛顿又重新把《几何原本》从头到尾地反复进行了深入钻研,为以后的科学工作打下了坚实的数学基础。
但是,在人类认识的长河中,无论怎样高明的前辈和名家,都不可能把问题全部解决。由于历史条件的限制,欧几里得在《几何原本》中提出几何学的“根据”问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这样的定义不可能在逻辑推理中起什么作用。又如,欧几里得在逻辑推理中使用了“连续”的概念,但是在《几何原本》中从未提到过这个概念。
《几何原本》读后感5
公理化结构是近代数学的主要特征。而《原本》是完成公理化结构的最早典范,它产生于两千多年前,这是难能可贵的。不过用现代的标准去衡量,也有不少缺点。首先,一个公理系统都有若干原始概念,或称不定义概念,作为其他概念定义的基础。点、线、面就属于这一类。而在《原本》中一一给出定义,这些定义本身就是含混不清的。其次是公理系统不完备,没有运动、顺序、连续性等公理,所以许多证明不得不借助于直观。此外,有的公理不是独立的,即可以由别的公理推出。这些缺陷直到1899年希尔伯特(Hilbert)的《几何基础》出版才得到了补救。尽管如此,毕竟瑕不掩瑜,《原本》开创了数学公理化的正确道路,对整个数学发展的影响,超过了历史上任何其他著作。
《原本》的两个理论支柱——比例论和穷竭法。为了论述相似形的理论,欧几里得安排了比例论,引用了欧多克索斯的比例论。这个理论是无比的成功,它避开了无理数,而建立了可公度与不可公度的正确的比例论,因而顺利地建立了相似形的理论。在几何发展的历史上,解决曲边围成的面积和曲面围成的体积等问题,一直是人们关注的重要课题。这也是微积分最初涉及的问题。它的解决依赖于极限理论,这已是17世纪的事了。然而在古希腊于公元前三四世纪对一些重要的面积、体积问题的证明却没有明显的极限过程,他们解决这些问题的理念和方法是如此的超前,并且深刻地影响着数学的发展。
猜你喜欢