古今数学思想读后感500汇总(8)
2022-08-20 来源:百合文库
欧几里得的《几何原本》开创了数学最早的典范,是漫漫长河中的第一座丰碑,公理化的思想由此而生;
祖冲之关于圆周率的密率(https://simgs.baihewenku.com/upload/355/113)给了国人足够骄傲的.资本,也把“割圆术”发挥到了极致;
牛顿和莱布尼兹联手创造了微积分(尽管他们之间有这样那样的矛盾),开创了数学的分析时代,微积分也被誉为“人类精神的最高胜利”(恩格斯语);历史就是这样被书写,历史就是这样被引领,历史就是这样被创造。
一个多世纪前的1900年,德国数学家希尔伯特正在做一个题为《数学问题》的演讲,提出了23个需要被重视和解决的数学问题。正是这23个数学问题,引领了整个二十世纪数学发展的主流。
1994年,当二十世纪即将落幕的时候,年轻的英国数学家维尔斯创造了一个新的历史——费马大定理获证,从而结束了这场长达300年之久的竞逐,给二十世纪的数学演奏了一首美妙的终曲。
就这样一次次的被感动,不仅为成功者喜悦感动,也为不被承认的成功者默默感动。
天才往往是孤独的,先知者注定得不到世人的理解。
许多天才的数学家,英年早逝,终生难以得志。
椭圆函数论的创始人阿贝尔一生贫病交加,大学毕业长期找不到工作,在他仅仅27年的短暂生命中,却留下许多创造性的贡献。但当人们认识到他的才华,柏林大学终身教授的聘书下达时,他已经离开人世两年了。
同维尔斯一样,伽罗瓦同样攻克了历经三百年的难题——方程根式解的存在问题;但不同的是,维尔斯成为数学的终身成就奖——沃尔夫奖最年轻的得主,那年他44岁,而伽罗瓦死时不到21岁,他的研究只能藏身于废纸篓中。
集合论和无限概念的创始人康托尔,由于他的理论不被世人理解而广受排挤,最后郁郁而终。
天才的思想往往是超前的,在我们这些凡夫俗子眼中,的确很难理解他们。但就是在这样的环境下,他们依然默默的坚守着自己的信念,执著着自己的理想。除了感动,我还能有什么呢?
祖冲之关于圆周率的密率(https://simgs.baihewenku.com/upload/355/113)给了国人足够骄傲的.资本,也把“割圆术”发挥到了极致;
牛顿和莱布尼兹联手创造了微积分(尽管他们之间有这样那样的矛盾),开创了数学的分析时代,微积分也被誉为“人类精神的最高胜利”(恩格斯语);历史就是这样被书写,历史就是这样被引领,历史就是这样被创造。
一个多世纪前的1900年,德国数学家希尔伯特正在做一个题为《数学问题》的演讲,提出了23个需要被重视和解决的数学问题。正是这23个数学问题,引领了整个二十世纪数学发展的主流。
1994年,当二十世纪即将落幕的时候,年轻的英国数学家维尔斯创造了一个新的历史——费马大定理获证,从而结束了这场长达300年之久的竞逐,给二十世纪的数学演奏了一首美妙的终曲。
就这样一次次的被感动,不仅为成功者喜悦感动,也为不被承认的成功者默默感动。
天才往往是孤独的,先知者注定得不到世人的理解。
许多天才的数学家,英年早逝,终生难以得志。
椭圆函数论的创始人阿贝尔一生贫病交加,大学毕业长期找不到工作,在他仅仅27年的短暂生命中,却留下许多创造性的贡献。但当人们认识到他的才华,柏林大学终身教授的聘书下达时,他已经离开人世两年了。
同维尔斯一样,伽罗瓦同样攻克了历经三百年的难题——方程根式解的存在问题;但不同的是,维尔斯成为数学的终身成就奖——沃尔夫奖最年轻的得主,那年他44岁,而伽罗瓦死时不到21岁,他的研究只能藏身于废纸篓中。
集合论和无限概念的创始人康托尔,由于他的理论不被世人理解而广受排挤,最后郁郁而终。
天才的思想往往是超前的,在我们这些凡夫俗子眼中,的确很难理解他们。但就是在这样的环境下,他们依然默默的坚守着自己的信念,执著着自己的理想。除了感动,我还能有什么呢?