数学家谷超豪读后感总汇(2)
2022-08-19 来源:百合文库
你知道毕达哥拉斯何许人?
你能列举《几何原本》与《九章算术》的不同风格?
你能列举几位著名温州籍的数学家?
这些问题让我们学了九年数学的学生不知所答,但随着上学期对《数学史选讲》进行整合学习,对这些问题逐渐明朗与了解。发现数学的发展伴随着人类的发展,上下五千年的人类文明蕴藏着十分丰富的数学史料。通过学习让我们更加深入地了解数学的发展历程,历经数学萌芽期、初等数学时期、变量数学时期、近代数学时期、现代数学时期,这如同胎儿的发育过程,大体要经过从单细胞生物到人类的进化过程,要经过类似原生动物、腔肠动物、脊椎动物、灵长类等各阶段,最后才长成人类的样子。作为人类智慧的结晶,数学不仅是人类文化的重要组成部分,而且始终是推动人类文明进步的重要力量。
在近一周的数学史学习中,我感触颇深,适逢老师布置大家撰写一篇学习体会,现报告如下:
体会一:懂得历史:从欧几里得到牛顿的思想变迁
历史使人明智,数学史也不例外。古希腊的文明,数学是主要标志之一,其中欧几里得的《几何原本》闪耀着理性的光辉,人们在欣赏和赞叹严密的逻辑体系的同时,渐渐地把数学等同于逻辑,以“理性的封闭演绎”作为数学的主要特征。跟我国古代数学巨著《九章算术》相对照,就可以发现从形式到内容都各有特色和所长,形成东西方数学的不同风格:《几何原本》以形式逻辑方法把全部内容贯穿起来,极少提及应用问题,以几何为主,略有一点算术内容,而《九章算术》则按问题的性质和解法把全部内容分类编排,以解应用问题为主,包含了算术、代数、几何等我国当时数学的全部内容。但是在近代数学史上,以牛顿为代表的数学巨人冲破了“数学=逻辑演绎”的公式,创造地发明了微积分。从中我们可以认识到欧几里得的几何学具有严密的逻辑演绎思维模式,牛顿的微积分具有开放的实践创造思维模式。
在我们的"学习中同样需要兼顾严密的逻辑演绎思维与开放的实践创造思维。