奇妙数学史读后感500合集(8)
2022-08-18 来源:百合文库
同维尔斯一样,伽罗瓦同样攻克了历经三百年的难题——方程根式解的存在问题;但不同的是,维尔斯成为数学的终身成就奖——沃尔夫奖最年轻的得主,那年他44岁,而伽罗瓦死时不到21岁,他的研究只能藏身于废纸篓中。
集合论和无限概念的创始人康托尔,由于他的理论不被世人理解而广受排挤,最后郁郁而终。
天才的思想往往是超前的,在我们这些凡夫俗子眼中,的确很难理解他们。但就是在这样的环境下,他们依然默默的坚守着自己的信念,执著着自己的理想。除了感动,我还能有什么呢?
在那漫漫长河中,璀璨巨星令我欣然神往,惊涛骇浪更令我心潮澎湃。三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势,海洋般伟岸的身姿。
每一次危机巨浪之后,纳百川,聚众流,数学以更加广阔的胸怀滚滚向前,尽管这其中有很多悲壮的成分。
第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。
第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。
第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。
滚滚巨流,势无可挡,数学的长河竟拥有如此的悲壮和激情,那种“山穷水尽疑无路,柳暗花明又一村”的成长能不被感动吗?
你知道毕达哥拉斯何许人?
你能列举《几何原本》与《九章算术》的不同风格?
你能列举几位著名温州籍的数学家?
这些问题让我们学了九年数学的学生不知所答,但随着上学期对《数学史选讲》进行整合学习,对这些问题逐渐明朗与了解。发现数学的发展伴随着人类的发展,上下五千年的人类文明蕴藏着十分丰富的数学史料。通过学习让我们更加深入地了解数学的发展历程,历经数学萌芽期、初等数学时期、变量数学时期、近代数学时期、现代数学时期,这如同胎儿的发育过程,大体要经过从单细胞生物到人类的进化过程,要经过类似原生动物、腔肠动物、脊椎动物、灵长类等各阶段,最后才长成人类的样子。作为人类智慧的结晶,数学不仅是人类文化的重要组成部分,而且始终是推动人类文明进步的重要力量。
集合论和无限概念的创始人康托尔,由于他的理论不被世人理解而广受排挤,最后郁郁而终。
天才的思想往往是超前的,在我们这些凡夫俗子眼中,的确很难理解他们。但就是在这样的环境下,他们依然默默的坚守着自己的信念,执著着自己的理想。除了感动,我还能有什么呢?
在那漫漫长河中,璀璨巨星令我欣然神往,惊涛骇浪更令我心潮澎湃。三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势,海洋般伟岸的身姿。
每一次危机巨浪之后,纳百川,聚众流,数学以更加广阔的胸怀滚滚向前,尽管这其中有很多悲壮的成分。
第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。
第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。
第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。
滚滚巨流,势无可挡,数学的长河竟拥有如此的悲壮和激情,那种“山穷水尽疑无路,柳暗花明又一村”的成长能不被感动吗?
你知道毕达哥拉斯何许人?
你能列举《几何原本》与《九章算术》的不同风格?
你能列举几位著名温州籍的数学家?
这些问题让我们学了九年数学的学生不知所答,但随着上学期对《数学史选讲》进行整合学习,对这些问题逐渐明朗与了解。发现数学的发展伴随着人类的发展,上下五千年的人类文明蕴藏着十分丰富的数学史料。通过学习让我们更加深入地了解数学的发展历程,历经数学萌芽期、初等数学时期、变量数学时期、近代数学时期、现代数学时期,这如同胎儿的发育过程,大体要经过从单细胞生物到人类的进化过程,要经过类似原生动物、腔肠动物、脊椎动物、灵长类等各阶段,最后才长成人类的样子。作为人类智慧的结晶,数学不仅是人类文化的重要组成部分,而且始终是推动人类文明进步的重要力量。