数学的兴起读后感整理(30)
2022-08-13 来源:百合文库
清晰的数学语言的表达,将会很好的提高学生的思维。思维是内在的,表达不出来的,而语言是可以表达出来的,借助语言,将内在的思维表达出来。如果一个人的数学语言表达能力非常强,那么他的思维能力肯定不会太弱。
学生解决问题时,先用自己的语言来解决这一题的意思,思考后再自己来解决、描述这一题的道理,当学生解决完后,再让学生进行自主总结。在反复的让学生说的过程中,不仅锻炼了学生的语言表达能力,又提高了学生思维。
总之,在低年级的教学中,仅仅就提讲题是远远不够的,作为教师,在教学中我们也逐步给学生渗透数学思想,发展学生思维。
《数学思维养成课》的读后感3
我对理科比较感兴趣,因此大学时读的是数学与应用数学专业,学习各种比较深奥的数学知识。但由于工作长时间没有碰大学知识,大学所学的数学已忘记差不多,而且我教的是小学数学,更没有大学所学的用武之地。那什么是随着时间推移所没有忘却的,我在这本书中找到了答案,清晰地认识到小学数学怎样教,教什么。
就如数学教育家米山国藏说:“学生所学的数学知识,在进入社会后几乎没有什么机会应用,因而这种作为知识的数学,通常在走出校门后不到一两年就忘掉了。然而不管他们从事什么工作,唯有深深铭刻于头脑中的数学思想和方法等随时地发生作用,使他们受益终身。”由此可见,对数学思想的感悟是学生数学素养的集中体现,也是“育人为本”教育理念在数学学科的具体体现。
要更好地在数学教学中给学生以数学思想的熏陶,对教师而言是一个极大的挑战,那么如何在教学中渗透“数学思想”呢?
一、认识:什么是“数学思想”
《辞海》中称“思想”为理性认识。《中国百科全书》认为“思想”是相对于感性认识的理性认识的成果。所谓数学思想,是指人们对数学理论与内容的本质认识,是从某些具体数学认识过程中提炼出的一些观点,它揭示了数学发展中普遍的规律,它直接支配着数学的实践活动,这是对数学规律的理性认识。数学思想分为三个板块:抽象思想、推理思想、模型思想。
学生解决问题时,先用自己的语言来解决这一题的意思,思考后再自己来解决、描述这一题的道理,当学生解决完后,再让学生进行自主总结。在反复的让学生说的过程中,不仅锻炼了学生的语言表达能力,又提高了学生思维。
总之,在低年级的教学中,仅仅就提讲题是远远不够的,作为教师,在教学中我们也逐步给学生渗透数学思想,发展学生思维。
《数学思维养成课》的读后感3
我对理科比较感兴趣,因此大学时读的是数学与应用数学专业,学习各种比较深奥的数学知识。但由于工作长时间没有碰大学知识,大学所学的数学已忘记差不多,而且我教的是小学数学,更没有大学所学的用武之地。那什么是随着时间推移所没有忘却的,我在这本书中找到了答案,清晰地认识到小学数学怎样教,教什么。
就如数学教育家米山国藏说:“学生所学的数学知识,在进入社会后几乎没有什么机会应用,因而这种作为知识的数学,通常在走出校门后不到一两年就忘掉了。然而不管他们从事什么工作,唯有深深铭刻于头脑中的数学思想和方法等随时地发生作用,使他们受益终身。”由此可见,对数学思想的感悟是学生数学素养的集中体现,也是“育人为本”教育理念在数学学科的具体体现。
要更好地在数学教学中给学生以数学思想的熏陶,对教师而言是一个极大的挑战,那么如何在教学中渗透“数学思想”呢?
一、认识:什么是“数学思想”
《辞海》中称“思想”为理性认识。《中国百科全书》认为“思想”是相对于感性认识的理性认识的成果。所谓数学思想,是指人们对数学理论与内容的本质认识,是从某些具体数学认识过程中提炼出的一些观点,它揭示了数学发展中普遍的规律,它直接支配着数学的实践活动,这是对数学规律的理性认识。数学思想分为三个板块:抽象思想、推理思想、模型思想。