中学数学中的数学史读后感摘录(6)
2022-08-12 来源:百合文库
作者是按如下的数学史分期为线索进行展开论述的:
一、数学的起源和发展;
二、初等数学时期;
1、古希腊数学,2、中世纪东方数学,3、欧洲文艺复兴时期。
三、近代数学时期;
四、现代数学时期。
此书从上古的巴比伦、希腊、中国、印度、阿拉伯,以至当代数学,对于数学的贡献与影响都有中肯的评论和解说。在原始社会,从原始的“数觉”到抽象的“数”概念的形成;随着计数的慢慢发展,出现了石子记数和结绳记事等记数方法;接着经验算术与几何法的发现;再在此基础上加工升华为具有初步逻辑结构的论证数学体系;随之发展而来的便是近代数学;之后数学的发展更是迅猛:微积分的创立,代数学的新生,几何学的变革……
在很多人看来数学总是那么枯燥乏味的,没有多大的兴致看完这本书。而此书中作者不仅对数学史实有详尽而忠实的介绍,还借助各种例子来让读者理解,甚至加入了很多生动有趣的故事及奇闻轶事,例如阿基米德解决皇冠难题的故事,牛顿苹果落地的故事等等。读之趣味盎然,大大增强了书本的可读性。书中还写到了很多著名的数学家,并就其学术成就做了概括的介绍,尤其重要成就,不惜花了很多篇幅以详细说明。
最后,作者还就数学与社会的关系及两者互相之间的影响发表了论述。他精辟地阐述为:数学的发展与社会的进步有着密切的联系,这种联系是双向的,即一方面,数学的发展依赖于社会环境,受着社会经济、政治和文化等诸多因素的影响;另一方面,数学的发展又反过来对人类社会物质文明和精神文明两大方面的影响。接着,作者从数学与社会进步,数学发展中心的迁移,数学的社会化三方面进行了展开说明。
我想我本是数学系的学生,多少是得对数学史有所了解。虽没有过于仔细的拜读,但我想通过这次翻阅还是受益匪浅的。
篇一:《数学简史》的读书感受
我阅读《数学简史》,完全在一种休闲的、轻松的,也是舒坦的、愉快的状况之中。碰到繁复的数学公式、定理及其证明等,我一目十行、囫囵吞枣,一如我读大部头的小说,往往常规地跳过向来不太在意的大段心理描写一样。读《数学简史》,我却十分留意它行云流水的叙述、缜密思维的演绎、多姿多彩的话语、宏大紧密的结构。有时,我按图索骥,对着目录,找准其中的某一篇章,仔细揣摩;有时,我随意打开其中的某页,顺势而读,总能做到乐在其中。我不求透彻的理解、不求系统的把握,数学简史》让我与牛顿、高斯这些巨人亲密接触,也让我循着代数、几何、算术、三角学发展的脉络,靠近(还不能说走进)数学。在我来说,只是追求阅读视野的扩大、知识背景的重构。
一、数学的起源和发展;
二、初等数学时期;
1、古希腊数学,2、中世纪东方数学,3、欧洲文艺复兴时期。
三、近代数学时期;
四、现代数学时期。
此书从上古的巴比伦、希腊、中国、印度、阿拉伯,以至当代数学,对于数学的贡献与影响都有中肯的评论和解说。在原始社会,从原始的“数觉”到抽象的“数”概念的形成;随着计数的慢慢发展,出现了石子记数和结绳记事等记数方法;接着经验算术与几何法的发现;再在此基础上加工升华为具有初步逻辑结构的论证数学体系;随之发展而来的便是近代数学;之后数学的发展更是迅猛:微积分的创立,代数学的新生,几何学的变革……
在很多人看来数学总是那么枯燥乏味的,没有多大的兴致看完这本书。而此书中作者不仅对数学史实有详尽而忠实的介绍,还借助各种例子来让读者理解,甚至加入了很多生动有趣的故事及奇闻轶事,例如阿基米德解决皇冠难题的故事,牛顿苹果落地的故事等等。读之趣味盎然,大大增强了书本的可读性。书中还写到了很多著名的数学家,并就其学术成就做了概括的介绍,尤其重要成就,不惜花了很多篇幅以详细说明。
最后,作者还就数学与社会的关系及两者互相之间的影响发表了论述。他精辟地阐述为:数学的发展与社会的进步有着密切的联系,这种联系是双向的,即一方面,数学的发展依赖于社会环境,受着社会经济、政治和文化等诸多因素的影响;另一方面,数学的发展又反过来对人类社会物质文明和精神文明两大方面的影响。接着,作者从数学与社会进步,数学发展中心的迁移,数学的社会化三方面进行了展开说明。
我想我本是数学系的学生,多少是得对数学史有所了解。虽没有过于仔细的拜读,但我想通过这次翻阅还是受益匪浅的。
篇一:《数学简史》的读书感受
我阅读《数学简史》,完全在一种休闲的、轻松的,也是舒坦的、愉快的状况之中。碰到繁复的数学公式、定理及其证明等,我一目十行、囫囵吞枣,一如我读大部头的小说,往往常规地跳过向来不太在意的大段心理描写一样。读《数学简史》,我却十分留意它行云流水的叙述、缜密思维的演绎、多姿多彩的话语、宏大紧密的结构。有时,我按图索骥,对着目录,找准其中的某一篇章,仔细揣摩;有时,我随意打开其中的某页,顺势而读,总能做到乐在其中。我不求透彻的理解、不求系统的把握,数学简史》让我与牛顿、高斯这些巨人亲密接触,也让我循着代数、几何、算术、三角学发展的脉络,靠近(还不能说走进)数学。在我来说,只是追求阅读视野的扩大、知识背景的重构。