教师第二曲线战略读后感汇集(28)
2022-08-10 来源:百合文库
例如教学“百分率”这一内容,我没有把书上的发芽率、成活率等例题搬到课堂上直接向学生讲解,而是课前先让学生进行一项社会调查,调查我们生活中那些地方用到百分数,是怎样用的?学生搜集到大量资料:及格率、优秀率、出勤率、种子的发芽率……并深入到生活中去询问这些百分率在实际生活中是怎样应用的。上课了,面对搜集到的众多资料,学生享受着自己调查的乐趣,此时,及时导入新课,学生结合课前搜集的信心和及时提出的问题积极投入到探究知识的过程中。当数学与儿童现实生活密切联系时,数学才是鲜活的富有生命力的。
二、探寻“美”的数学课堂
书中提到,智育和美育是不可分隔的统一体。科学(智育)与艺术(美育)从总体上是认识世界的两种不同方式,虽说各自具有不同的特点,但思维方式和创作过程,二者相互渗透,这也是学习科学知识和进行审美教育相结合的最基本条件。《圆的认识》一课,毕达哥拉斯学派认为,一切立体图形中最美的是球形,一切平面图形中最美的是圆形。那么,圆到底美在哪里,我们又该如何引导学生去感受这种美呢?课堂上,一位老师问了几个值得思考的问题。“与正方形、长方形等直线图形相比,圆美在哪里?”(圆是曲线围成的。)“椭圆也是曲线围成的,与其他曲线图形相比,圆又有什么特殊之处?”(圆很完整,所有半径都相,而且不管怎么对折都是对称的。)“圆的半径处处相等,这与圆的美又有什么相关联系吗?”(所有半径相等,使得圆有一种特殊性,就是无限对称的和谐结构。
)“一个图形的对称性越多,图形越完美。”
这一系列的问题,看起来是在不停地追问圆为什么是最美的图形,但这个过程却是在引导学生揭示圆的本质特征,这些特征使得圆成为了最美的平面图形。至此,以对称美为中心,以数学为载体,以生活为研究对象,学生经历了数学知识的获取、数学思想的渗透、数学美的体验,并感受到数学的魅力与美感,并激发他们对数学科学、理性的探索。
二、探寻“美”的数学课堂
书中提到,智育和美育是不可分隔的统一体。科学(智育)与艺术(美育)从总体上是认识世界的两种不同方式,虽说各自具有不同的特点,但思维方式和创作过程,二者相互渗透,这也是学习科学知识和进行审美教育相结合的最基本条件。《圆的认识》一课,毕达哥拉斯学派认为,一切立体图形中最美的是球形,一切平面图形中最美的是圆形。那么,圆到底美在哪里,我们又该如何引导学生去感受这种美呢?课堂上,一位老师问了几个值得思考的问题。“与正方形、长方形等直线图形相比,圆美在哪里?”(圆是曲线围成的。)“椭圆也是曲线围成的,与其他曲线图形相比,圆又有什么特殊之处?”(圆很完整,所有半径都相,而且不管怎么对折都是对称的。)“圆的半径处处相等,这与圆的美又有什么相关联系吗?”(所有半径相等,使得圆有一种特殊性,就是无限对称的和谐结构。
)“一个图形的对称性越多,图形越完美。”
这一系列的问题,看起来是在不停地追问圆为什么是最美的图形,但这个过程却是在引导学生揭示圆的本质特征,这些特征使得圆成为了最美的平面图形。至此,以对称美为中心,以数学为载体,以生活为研究对象,学生经历了数学知识的获取、数学思想的渗透、数学美的体验,并感受到数学的魅力与美感,并激发他们对数学科学、理性的探索。