史通论和趣味代数学读后感摘录(12)
2022-07-09 来源:百合文库
数学是一门历史性或者说是累积性很强的学科,我们学习数学的过程应与人类认识数学的顺序一致,这样更符合我们的数学认知规律。学习数学的道路上遇到的每一个问题,或许都有数学家为它绞尽脑汁过。读数学史,可以帮助我们了解数学演化的真实过程,体味数学思想的诞生与发展,可以使我们从前人的`探索和奋斗中汲取教训和经验,获得鼓舞和增强信心。那些悠悠长河中的数学人所做的每一份努力,都是为了让我们可以站在他们的肩膀上,更清楚地认识这个世界。
数学是各个时代人类文明的标志之一,是推进人类文明的重要力量,数学史不仅是我们这些数学相关人士需要了解的,任何一个关心人类文明发展的人都值得了解。
《数学史概论》读后感2
此书是《数学史教程》的第二版,这本书还得到了诸多数学界有望人士的高度赞扬。嘉兴学院名誉校长,国际数学大师陈省身先生为此书惠赠了墨宝:了解历史的变化是了解这门科学的一个步骤。此外,吴文俊院士也在百忙中赶写了读后感,对《数学史概论》一书在数学史学科研究上的肯定,并称之“翻阅此书都会开卷有益并感到乐趣”。
数学是一门历史性或者说积累性很强的学科,重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有理论,而且总是包容原先的理论。所以说数学是历史最悠久的人类知识领域之一。因此也有数学史家认为“在大多数学科里,一代人的建筑为下一代所摧毁,一个人的创造被另一个人所破坏,但是有些学科就像数学,每一代人都在古老的大厦上添加一层楼”。
作者是按如下的数学史分期为线索进行展开论述的:
一、数学的起源和发展;
二、初等数学时期;
1、古希腊数学,
2、中世纪东方数学,
3、欧洲文艺复兴时期。
三、近代数学时期;
四、现代数学时期。
此书从上古的巴比伦、希腊、中国、印度、阿拉伯,以至当代数学,对于数学的贡献与影响都有中肯的评论和解说。在原始社会,从原始的“数觉”到抽象的“数”概念的形成;随着计数的慢慢发展,出现了石子记数和结绳记事等记数方法;接着经验算术与几何法的发现;再在此基础上加工升华为具有初步逻辑结构的论证数学体系;随之发展而来的便是近代数学;之后数学的发展更是迅猛:微积分的创立,代数学的新生,几何学的变革......
数学是各个时代人类文明的标志之一,是推进人类文明的重要力量,数学史不仅是我们这些数学相关人士需要了解的,任何一个关心人类文明发展的人都值得了解。
《数学史概论》读后感2
此书是《数学史教程》的第二版,这本书还得到了诸多数学界有望人士的高度赞扬。嘉兴学院名誉校长,国际数学大师陈省身先生为此书惠赠了墨宝:了解历史的变化是了解这门科学的一个步骤。此外,吴文俊院士也在百忙中赶写了读后感,对《数学史概论》一书在数学史学科研究上的肯定,并称之“翻阅此书都会开卷有益并感到乐趣”。
数学是一门历史性或者说积累性很强的学科,重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有理论,而且总是包容原先的理论。所以说数学是历史最悠久的人类知识领域之一。因此也有数学史家认为“在大多数学科里,一代人的建筑为下一代所摧毁,一个人的创造被另一个人所破坏,但是有些学科就像数学,每一代人都在古老的大厦上添加一层楼”。
作者是按如下的数学史分期为线索进行展开论述的:
一、数学的起源和发展;
二、初等数学时期;
1、古希腊数学,
2、中世纪东方数学,
3、欧洲文艺复兴时期。
三、近代数学时期;
四、现代数学时期。
此书从上古的巴比伦、希腊、中国、印度、阿拉伯,以至当代数学,对于数学的贡献与影响都有中肯的评论和解说。在原始社会,从原始的“数觉”到抽象的“数”概念的形成;随着计数的慢慢发展,出现了石子记数和结绳记事等记数方法;接着经验算术与几何法的发现;再在此基础上加工升华为具有初步逻辑结构的论证数学体系;随之发展而来的便是近代数学;之后数学的发展更是迅猛:微积分的创立,代数学的新生,几何学的变革......