百合文库
首页 > 文库精选

拓扑学连通空间读后感汇合(18)

2022-07-09 来源:百合文库
当然,柯朗没有看到数学的一些激动人心的新进展,如费马大定理、四色问题的证明,以及素数问题、纽结、分形和连续统假设等。这一切都由斯图尔特在第9章“最新进展”中做了精要而出色的介绍。
本书的参考文献也做得相当好,推荐阅读书目肯定花费了作者很多心思。这也是一本好的科普书的特征。
好作品要让读者常读常新。例如《西游记》,比起那些佛教典籍,太容易读懂了,但好玩的故事和浅显的文字背后,其思想上的玄妙实在不是一语、一人可以道破、穷尽的,故而历来评论绵绵不断;即便是普通读者,碰到一些社会现象,与小说中的情节做些类比,也有新的感悟。那么科学著作能否也达到同样的功效呢?至少,《什么是数学》这本书是做到了。
《几何原本》读后感1
《几何原本》的作者欧几里得能够代表整个古希腊人民,那么我可以说,古希腊是古代文化中最灿烂的一支——因为古希腊的数学中,所包含的不仅仅是数学,还有着难得的逻辑,更有着耐人寻味的哲学。
《几何原本》这本数学著作,以几个显而易见、众所周知的定义、公设和公理,互相搭桥,展开了一系列的命题:由简单到复杂,相辅而成。其逻辑的严密,不能不令我们佩服。
就我目前拜访的几个命题来看,欧几里得证明关于线段“一样长”的题,最常用、也是最基本的,便是画圆:因为,一个圆的所有半径都相等。一般的数学思想,都是很复杂的,这边刚讲一点,就又跑到那边去了;而《几何原本》非常容易就被我接受,其原因大概就在于欧几里得反复运用一种思想、使读者不断接受的缘故吧。
不过,我要着重讲的,是他的哲学。
书中有这样几个命题:如,“等腰三角形的两底角相等,将腰延长,与底边形成的两个补角亦相等”,再如,“如果在一个三角形里,有两个角相等,那么也有两条边相等”。这些命题,我在读时,内心一直承受着几何外的震撼。
我们七年级已经学了几何。想想那时做这类证明题,需要证明一个三角形中的两个角相等的时候,我们总是会这么写:“因为它是一个等腰三角形,所以两底角相等”——我们总是习惯性的认为,等腰三角形的两个底角就是相等的;而看《几何原本》,他思考的是“等腰三角形的两个底角为什么相等”。想想看吧,一个思想习以为常,一个思想在思考为什么,这难道还不够说明现代人的问题吗?
猜你喜欢