玛雅小班数学读后感50字总汇(6)
2022-07-08 来源:百合文库
最后,作者还就数学与社会的关系及两者互相之间的影响发表了论述。他精辟地阐述为:数学的发展与社会的进步有着密切的联系,这种联系是双向的,即一方面,数学的发展依赖于社会环境,受着社会经济、政治和文化等诸多因素的影响;另一方面,数学的发展又反过来对人类社会物质文明和精神文明两大方面的影响。接着,作者从数学与社会进步,数学发展中心的迁移,数学的社会化三方面进行了展开说明。
我想我本是数学系的学生,多少是得对数学史有所了解。虽没有过于仔细的拜读,但我想通过这次翻阅还是受益匪浅的。
数学书籍读后感3
数学的发展史也就是科学发展的历史。最初牙牙学语地创造丰富多彩的记数制度,然后在花季雨季之中为数学建立越来越多、越来越详尽的分支,到如今,展现它花样年华之时耀眼夺目的数学成果。每一步都包含艰辛,渗透着无限的思考,在这期间,有多少人将自己的一生都奉献给了数学,给了这一门散发着无穷魅力的学科。
《数学史选讲》一书首先讲述了各种各样的记数方法,有象形文字中繁琐的数字记法,有楔形文字中造型独特的记数法,由中国古代简易的"算筹记数,有玛雅以神的头像作为数字的奇异的记数法,还有沿用至今的印度—阿拉伯数码。从早期的记数制度演变中不难看出,就连数字的创造都是艰辛的,在那个时候,如何发明一种便于使用、耐于使用的记数法,是建立数学学科的至关重要的基础。可以说,若然没有了人类对数字以及记数制度这种最初的研究探索,力求创造出一种最为简易方便的记数法,往后数学的研究便加倍了曲折、加倍了困难。
而在漫长的数学发展史中,最重要的莫过于无数为此奋斗一生的数学家,因为有了他们的辛酸血泪,有了他们的严谨态度和锲而不舍的探索精神,才为数学打下了坚实的基础,从而给平面解析几何、微积分、无穷集合论等等的数学分支创造了诞生的机会。然而数学的发展史曲折的、艰辛的,数学家的研究里程更是如此。他们花尽一生的心思换来的创新思维和超时代理论,大多数在他们的有生之年都得不到世人的认同。希帕苏斯向毕达哥拉斯学派的其他成员发表他对不可公度性的发现时,惊恐不已的成员将他抛进了大海;伽罗瓦提出的强有力的群论多次提交给科学院,最终得到的却是“完全无法理解”的评论;创造惊人的无穷集合论的康托尔最后带着诸多遗憾和无限的苦闷离开了人世;最怀才不遇的便是中学数学家阿贝尔,他经过无数努力最终证明了千古谜题——五次或以上的代数方程没有一般的求根公式,却遭到了一系列的冷遇,就连“数学王子”高斯看到论文的题目只说了一句“太可怕了,竟然写出这种东西来!
我想我本是数学系的学生,多少是得对数学史有所了解。虽没有过于仔细的拜读,但我想通过这次翻阅还是受益匪浅的。
数学书籍读后感3
数学的发展史也就是科学发展的历史。最初牙牙学语地创造丰富多彩的记数制度,然后在花季雨季之中为数学建立越来越多、越来越详尽的分支,到如今,展现它花样年华之时耀眼夺目的数学成果。每一步都包含艰辛,渗透着无限的思考,在这期间,有多少人将自己的一生都奉献给了数学,给了这一门散发着无穷魅力的学科。
《数学史选讲》一书首先讲述了各种各样的记数方法,有象形文字中繁琐的数字记法,有楔形文字中造型独特的记数法,由中国古代简易的"算筹记数,有玛雅以神的头像作为数字的奇异的记数法,还有沿用至今的印度—阿拉伯数码。从早期的记数制度演变中不难看出,就连数字的创造都是艰辛的,在那个时候,如何发明一种便于使用、耐于使用的记数法,是建立数学学科的至关重要的基础。可以说,若然没有了人类对数字以及记数制度这种最初的研究探索,力求创造出一种最为简易方便的记数法,往后数学的研究便加倍了曲折、加倍了困难。
而在漫长的数学发展史中,最重要的莫过于无数为此奋斗一生的数学家,因为有了他们的辛酸血泪,有了他们的严谨态度和锲而不舍的探索精神,才为数学打下了坚实的基础,从而给平面解析几何、微积分、无穷集合论等等的数学分支创造了诞生的机会。然而数学的发展史曲折的、艰辛的,数学家的研究里程更是如此。他们花尽一生的心思换来的创新思维和超时代理论,大多数在他们的有生之年都得不到世人的认同。希帕苏斯向毕达哥拉斯学派的其他成员发表他对不可公度性的发现时,惊恐不已的成员将他抛进了大海;伽罗瓦提出的强有力的群论多次提交给科学院,最终得到的却是“完全无法理解”的评论;创造惊人的无穷集合论的康托尔最后带着诸多遗憾和无限的苦闷离开了人世;最怀才不遇的便是中学数学家阿贝尔,他经过无数努力最终证明了千古谜题——五次或以上的代数方程没有一般的求根公式,却遭到了一系列的冷遇,就连“数学王子”高斯看到论文的题目只说了一句“太可怕了,竟然写出这种东西来!