对称轴的认识观后感汇集(18)
2022-05-25 来源:百合文库
一、章节复习——善于转化
我在复习概念时,采用章节知识归类编码法,即先列出所要复习的知识要点,然后归类排队,再用数字编码,这样做可增加学生复习的兴趣,增强学生的记忆和理解,最主要的是起点了把章节知识由量到质的飞跃,实现厚薄间的转化。
例如,复习“直线、线段、射线”这一节内容,我把主要知识编码成(1)(2)(3)(4)。(1)——一个基础;(2)——两个要点;(3)——三种延伸;(4)——四个异同点。这种复习提纲一提出,学生思维立即活跃,有的在思维,有的在议论,有的在阅读课本,设法寻找提纲的答案,我趁势把知识进行必要的讲解和点拨,其答案如下:(1)——一个基础。是指以直线为基本图形,线段和射线是直线上的一部分。(2)——两个要点。①两点确定一条直线;②两条直线相交只有1个交点。(3)——三种延伸。三种图形的延伸。直线可以向两方无限延伸;线段不能延伸;射线可以向一方无限延伸。(4)四个异同点。①端点个数不同;②图形特征不同;③表示方法不同;④描述的定义不同;事实证明,这种善于转化的复习确实能提高复习效率。
二、例题讲解——善于变化
复习课例题的选择,应是最有代表性和最能说明问题的典型习题。应能突出重点,反映大纲最主要、最基本的内容和要求。对例题进行分析和解答,发挥例题以点带面的作用,有意识有目的地在例题的基础上作系列的变化,达到能挖掘问题的内涵和外延、在变化中巩固知识、在运动中寻找规律的目的,实现复习的知识从量到质的转变。
例如,在复习二次函数的内容时,我举了这样一个例题:二次函数的图象经过点(0,0)与(-1,-1),开口向上,且在x轴上截得的线段长为2。求它的解析式。因为二次函数的图像抛物线是轴对称图形,由题意画图后,不难看出(-1,-1)是顶点,所以可用二次函数的顶点式y=-a(x m)2 n,再求得它的解析式(解法略)。在数学中我对例题作了变化,把题例中的条件“抛物线在x轴上截得的线段2改成4”,求解析式。变化后,由题意画图可知(-1,-1)不再是抛物线的顶点,但从图中看出,图像除了经过已知条件的两个点外,还经过一点(-4,0),所以可用y=a(x-x1)(x-x2)的形式求出它的解析式。再对例题进行变化,把题目中的“开口向上”这一条件去掉,求解析式。再次变化后,此题可有两种情况(i)开口向上;(ii)开口向下;
我在复习概念时,采用章节知识归类编码法,即先列出所要复习的知识要点,然后归类排队,再用数字编码,这样做可增加学生复习的兴趣,增强学生的记忆和理解,最主要的是起点了把章节知识由量到质的飞跃,实现厚薄间的转化。
例如,复习“直线、线段、射线”这一节内容,我把主要知识编码成(1)(2)(3)(4)。(1)——一个基础;(2)——两个要点;(3)——三种延伸;(4)——四个异同点。这种复习提纲一提出,学生思维立即活跃,有的在思维,有的在议论,有的在阅读课本,设法寻找提纲的答案,我趁势把知识进行必要的讲解和点拨,其答案如下:(1)——一个基础。是指以直线为基本图形,线段和射线是直线上的一部分。(2)——两个要点。①两点确定一条直线;②两条直线相交只有1个交点。(3)——三种延伸。三种图形的延伸。直线可以向两方无限延伸;线段不能延伸;射线可以向一方无限延伸。(4)四个异同点。①端点个数不同;②图形特征不同;③表示方法不同;④描述的定义不同;事实证明,这种善于转化的复习确实能提高复习效率。
二、例题讲解——善于变化
复习课例题的选择,应是最有代表性和最能说明问题的典型习题。应能突出重点,反映大纲最主要、最基本的内容和要求。对例题进行分析和解答,发挥例题以点带面的作用,有意识有目的地在例题的基础上作系列的变化,达到能挖掘问题的内涵和外延、在变化中巩固知识、在运动中寻找规律的目的,实现复习的知识从量到质的转变。
例如,在复习二次函数的内容时,我举了这样一个例题:二次函数的图象经过点(0,0)与(-1,-1),开口向上,且在x轴上截得的线段长为2。求它的解析式。因为二次函数的图像抛物线是轴对称图形,由题意画图后,不难看出(-1,-1)是顶点,所以可用二次函数的顶点式y=-a(x m)2 n,再求得它的解析式(解法略)。在数学中我对例题作了变化,把题例中的条件“抛物线在x轴上截得的线段2改成4”,求解析式。变化后,由题意画图可知(-1,-1)不再是抛物线的顶点,但从图中看出,图像除了经过已知条件的两个点外,还经过一点(-4,0),所以可用y=a(x-x1)(x-x2)的形式求出它的解析式。再对例题进行变化,把题目中的“开口向上”这一条件去掉,求解析式。再次变化后,此题可有两种情况(i)开口向上;(ii)开口向下;