初中数学本质讲座观后感汇集(3)
2022-05-27 来源:百合文库
事实上,把知识直接灌输给学生容易“干涸”,而握好契机,把获取知识的思想方法教给学生,则会生成知识的“海洋”。
3、教学时善于提炼
教师在上课时要善于从思想方法的视角帮助学生认识数学知识的发生与发展过程,要善于引导学生以数学思想方法为主线把知识点串联起来,要善于用思想方法的观点帮助学生形成自己系统的知识与方法网络。比如,在学习多边形对角线条数时,不能只让学生记牢结论:n边形对角线条数为多少条,而要重新帮助学生分析这个结论是如何来的。可引导学生从两个角度思考。角度1(从特殊到一般的思想方法):四边形对角线条数为2,五边形对角线条数为5=2 3,六边形对角线条数为9=2 3 4,……,从而n边形的对角线条数为2 3 4 …… (n-2)=……角度2(从局部到整体的思想方法):从n边形的一个顶点出发,有(n-3)条对角线,n个顶点就有n(n-3)条对角线,但一条对角线对应两个顶点,因此n边形共有条 对角线。这样,实现了数学知识与数学思想方法的有机融合。
把
知识形成的本质规律从思想方法的角度作提炼概括,恰恰是思考与解决问题的根本。在日积月累的教学中,让学生逐步形成用比较清晰的思想方法去驾驭知识的意识,是一个由知识向方法的转化,“学会”到“会学”的升华。这样,学生的数学素养才会真正的提高。
4、要潜移默化,由浅入深。
在渗透数学思想、方法的过程中,教师要精心设计、有机结合,要有意识地潜移默化地启发学生领悟蕴含于数学之中的种种数学思想方法,切忌生搬硬套,和盘托出,脱离实际等错误做法。比如,教学二次不等式解集时结合二次函数图象来理解和记忆,总结归纳出解集在“两根之间”、“两根之外”,利用数形结合方法,从而比较顺利地完成新旧知识的过渡。