百合文库
首页 > 文库精选

让课堂说话1上篇读后感集合(8)

2022-08-19 来源:百合文库
《小学数学与数学思想方法》读后感2
其实,这本书搁置在书架上已经许久了,因为里面概念性的东西比较多,所以读起来并不是那么趣味十足,之前读了几页,便没有再读下去。之所以重读这本书,缘于这几天和学生一起收看《名师同步课堂》,在电视上做六年级数学直播课的是经验丰富的鲁向前老师,我发现他在讲课的时候,特别注重数学思想方法的渗透,在这方面正是我所欠缺的。
鲁老师在讲解求体积的解决问题时,提到了把一个体积转化成另一个体积,正方体熔铸成圆柱体,小石子放入水中水面升高等等,体现了恒等变形的思想。
鲁老师特别提到一种数学思想方法,由圆柱体积的求法猜想并实验证明圆锥体积的求法,体现了类比的思想方法。类比思想是指依据两类数学对象的相似性,将已知的一类数学对象的.性质迁移到另一类数学对象上去的思想。
经常说教方法比教知识重要,作为一名数学老师,需要系统的了解数学思想方法。所以我便想到了书架上的这本书。说实话,读这本书是有些枯燥的,而且如果你不动脑子去思考书中的问题的话,那你可能仅仅读的就是字了。
在《小学数学与数学思想方法》这本书的封皮上写着:数学思想方法不同于一般的概念和技能,后者一般通过短期的训练便能掌握,数学思想方法的教学更应该是一个通过长期的渗透和影响才能够形成思想和方法的过程。教师应在每堂课的教学中适时、适当地体现思想方法的教学目标,使学生在潜移默化中日积月累,通过提高数学素养达到学好数学的目的。
这本书分上下两篇,上篇介绍各类思想方法,下篇介绍各类思想方法在每一册教材中的体现,这本书可以当成我们的一本工具书,在我们备课的时候,方便我们查阅。比如,在总结十以内的加减法或者乘法口诀的推导过程中,都体现了函数思想,作为老师的我们,不必让学生明确知道什么是函数思想,但是我们应该明白这里面体现了函数思想,并且有意识地向学生渗透思想方法,让学生在以后面对类似的问题,能够联想到这种思想方法去解决问题。
猜你喜欢