百合文库
首页 > 文库精选

统计学业务知识读后感整理(32)

2022-08-17 来源:百合文库
我们只有跨过数据化、数字化的长河,才能开启AI时代,路途遥远,主人!这是一本好书,值得推荐。
《大数据时代》读后感500字2
这么多年来,看了很多东西,如今回过头来发现,好像什么都忘了,真是悲剧,所谓读书破万卷,下笔如有神或许是不对的,还是需要下笔勤快,所以决定从这里开始。
这些年对于技术的发展,我是没有跟上,如今发现即便是对于投资,技术对于我们生活的改变太大,而自己身在这个技术浪潮的前沿,还是需要跟上步伐。
——前言
大数据这个概念已经提了很久,我也一直疏忽了对于它的理解。看完《大数据时代》,再结合如果工作上对于大数据的理解,顿时发现数据的重要性,以前在这方面的确没有足够的思想意识。
整本书来说,我觉得最关键的三个点是前面几个章节:
1、要总体,不要随机样本:从小对于统计学相关的学习,基本都是从样本出发,理论的基础在于如何随机的足够分散的选取样本,这可是技术活加直觉。而对于大数据来说,要的就是总体,本质上来说,总体样本的确更能准确找到结果。但是对于统计来说,总体的分析增加了数据分析的难度,不仅数据核对不好进行,一旦出现数据污染,准确度就会大打折扣,而且进行数据回溯的时候,也无法准确确认问题,而这一点也是后面相关性上问题;
2、要混乱,而不是精确:这里主要想说明的是希望数据的多样性,尽量将相关数据都收集起来,不管是结构化的还是非结构化的。这样就不可避免的最终结果的不准确性。大数据更多的是从一个总体数据中说明以后概率事件,既然是概率,也就可以理解无法精确。这里有个点的说明,我觉得需要提一下,大数据算法更倾向于“简单”,而不是复杂,这个倒是出乎我的意外。
3、要相关性,而不是因果:从我对于知识获取的过程来说,我是不同意这个观点,从人体对于知识的理解,还是要从因果论出发,没有因果论,就会变成瞎子。而作者的观点上来说,原因可能还是从大数据本身的非准确性,一旦找到合适的算法,找到相关性,向上追述原因本身就很难。但是从举的示例上看,相关性的确认是一个非常大的工程,基本就是使用排举法,一个一个试。
猜你喜欢